References
14. Cook DA, Erwin PJ, Triola MM. Computerized virtual patients in health professions education: a systematic review and meta-analysis. Acad Med. 2010;85(10):1589-1602. 15. Wolpaw T, Papp KK, Bordage G. Using SNAPPS to facilitate the expression of clinical reasoning and uncertainties: a randomized comparison group trial. Acad Med. 2009;84(4):517-524. 16. Smith BW, Slack MB. The effect of cognitive debiasing training among family medicine residents. Diagnosis (Berl). 2015;2(2):117- 121. 17. Mohan D, Fischhoff B, Angus DC, et al. Serious games may improve physician heuristics in trauma triage. Proc Natl Acad Sci U S A. 2018;115(37):9204-9209. 18. Goodman TR, Kelleher M. Improving Novice Radiology Trainees’ Perception Using Fine Art. J Am Coll Radiol. 2017;14(10):1337-1340. 19. Pusic MV, Andrews JS, Kessler DO, et al. Prevalence of abnormal cases in an image bank affects the learning of radiograph interpretation. Med Educ. 2012;46(3):289- 298. 20. Geijer H, Geijer M. Added value of double reading in diagnostic radiology,a systematic review. Insights Imaging. 2018;9(3):287-301. 21. Natarajan V, Bosch P, Dede O, et al. Is There Value in Having Radiology Provide a Second Reading in Pediatric Orthopaedic Clinic? J Pediatr Orthop. 2017;37(4):e292-e295. 22. Murphy R, Slater A, Uberoi R, Bungay H, Ferrett C. Reduction of perception error by double reporting of minimal preparation CT colon. Br J Radiol. 2010;83(988):331-335. 23. Harvey HB, Alkasab TK, Prabhakar AM, et al. Radiologist Peer Review by Group Consensus. J Am Coll Radiol. 2016;13(6):656-662. 24. Itri JN, Donithan A, Patel SH. Random Versus Nonrandom Peer Review: A Case for More Meaningful Peer Review. J Am Coll Radiol. 2018;15(7):1045-1052. 25. Silber JH, Williams SV, Krakauer H, Schwartz JS. Hospital and patient characteristics associated with death after surgery. A study of adverse occurrence and failure to rescue. Med Care. 1992;30(7):615-629. 26. Berwick DM, Calkins DR, McCannon CJ, Hackbarth AD. The 100,000 lives campaign: setting a goal and a deadline for improving health care quality. JAMA. 2006;295(3):324- 327. 27. Cardona-Morrell M, Prgomet M, Turner RM, Nicholson M, Hillman K. Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta- analysis. Int J Clin Pract. 2016;70(10):806- 824. 28. Maharaj R, Raffaele I, Wendon J. Rapid response systems: a systematic review and meta-analysis. Crit Care. 2015;19:254.
29. Solomon RS, Corwin GS, Barclay DC, Quddusi SF, Dannenberg MD. Effectiveness of rapid response teams on rates of in-hospital cardiopulmonary arrest and mortality: A systematic review and meta-analysis. J Hosp Med. 2016;11(6):438-445. 30. Chan PS, Jain R, Nallmothu BK, Berg RA, Sasson C. Rapid Response Teams: A Systematic Review and Meta-analysis. Arch Intern Med. 2010;170(1):18-26. 31. Chen J, Ou L, Flabouris A, Hillman K, Bellomo R, Parr M. Impact of a standardized rapid response system on outcomes in a large healthcare jurisdiction. Resuscitation. 2016;107:47-56. 32. Moriarty JP, Schiebel NE, Johnson MG, et al. Evaluating implementation of a rapid response team: considering alternative outcome measures. Int J Qual Health Care. 2014;26(1):49-57. 33. Bach TA, Berglund LM, Turk E. Managing alarm systems for quality and safety in the hospital setting. BMJ Open Qual. 2018;7(3):e000202. 34. Sendelbach S, Funk M. Alarm fatigue: a patient safety concern. AACN Adv Crit Care. 2013;24(4):378-386; quiz 387-378. 35. Allen J, Hileman K, Ward A. Simple solutions for improving patient safety in cardiac monitoring—eight critical elements to monitor alarm competency. https://www. aami.org/docs/default-source/foundation/ alarms/2013_si_alarm_competency_upmc. pdf?sfvrsn=5d4681e6_2. Accessed October 21, 2021. 36. Rhee C, Dantes R, Epstein L, et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA. 2017;318(13):1241-1249. 37. Torio CM, Moore BJ. National Inpatient Hospital Costs: The most expensive conditions by payer, 2013. Agency for Healthcare Research and Quality Statistical Brief #204. 2013. 38. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304-377. 39. Smyth MA, Brace-McDonnell SJ, Perkins GD. Identification of adults with sepsis in the prehospital environment: a systematic review. BMJ Open. 2016;6(8):e011218. 40. Hunter CL, Silvestri S, Ralls G, et al. Comparing Quick Sequential Organ Failure Assessment Scores to End-tidal Carbon Dioxide as Mortality Predictors in Prehospital Patients with Suspected Sepsis. West J Emerg Med. 2018;19(3):446-451. 41. Tedesco ER, Whiteman K, Heuston M, Swanson- Biearman B, Stephens K. Interprofessional Collaboration to Improve Sepsis Care and Survival Within a Tertiary Care Emergency Department. J Emerg Nurs. 2017;43(6):532- 538.
1. Singh H, Meyer AN, Thomas EJ. The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations. BMJ Qual Saf. 2014;23(9):727-731. 2. Zwaan L, de Bruijne M, Wagner C, et al. Patient record review of the incidence, consequences, and causes of diagnostic adverse events. Arch Intern Med. 2010;170(12):1015-1021. 3. Saber Tehrani AS, Lee H, Mathews SC, et al. 25-Year summary of US malpractice claims for diagnostic errors 1986-2010: an analysis from the National Practitioner Data Bank. BMJ Qual Saf. 2013;22(8):672-680. 4. National Academies of Sciences Engineering and Medicine. Improving Diagnosis in Health Care. Washington, DC2015. 5. Herweh C, Ringleb PA, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int J Stroke. 2016;11(4):438-445. 6. Bien N, Rajpurkar P, Ball RL, et al. Deep- learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699. 7. Li C, Jing B, Ke L, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun (Lond). 2018;38(1):59. 8. Vandenberghe ME, Scott ML, Scorer PW, Soderberg M, Balcerzak D, Barker C. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci Rep. 2017;7:45938. 9. Xiong Y, Ba X, Hou A, Zhang K, Chen L, Li T. Automatic detection of mycobacterium tuberculosis using artificial intelligence. J Thorac Dis. 2018;10(3):1936-1940. 10. Campbell R. The five “rights” of clinical decision support. J AHIMA. 2013;84(10):42- 47; quiz 48. 11. The Joint Commission. Hospital: 2021 National Patient Safety Goals. https://www. jointcommission.org/standards/national- patient-safety-goals/hospital-national-patient- safety-goals/. Published 2021. Accessed October 12, 2021. 12. Etchells E, Adhikari NK, Cheung C, et al. Real- time clinical alerting: effect of an automated paging system on response time to critical laboratory values--a randomised controlled trial. Qual Saf Health Care. 2010;19(2):99- 102. 13. Dalal AK, Roy CL, Poon EG, et al. Impact of an automated email notification system for results of tests pending at discharge: a cluster- randomized controlled trial. J Am Med Inform Assoc. 2014;21(3):473-480.
113
Powered by FlippingBook