Florida Psychology Ebook Continuing Education

Š Brauer, R., Alfageh, B., Blais, J. E., Chan, E. W., Chui, C., Hayes, J. F., Man, K., Lau, W., Yan, V., Beykloo, M. Y., Wang, Z., Wei, L., & Wong, I. (2021). Psychotropic medicine consumption in 65 countries and regions, 2008–19: A longitudinal study. National Library of Medicine. The Lancet: Psychiatry, 8(12): 1071-1082. https://doi.org/ 10.1016/S2215-0366(21)00292-3 Š Caire, M. J., Reddy, V., & Varacallo, M. (2022, March 26). Physiology: Synapse. In StatPearls. StatPearls Publishing. Š Camargo, A., Bettio, L., Rosa, P. B., Rosa, J. M., Altê, G. A., & Rodrigues, A. (2022). The antidepressant-like effect of guanosine involves the modulation of adenosine A1 and A2A receptors. Purinergic Signalling. https://doi.org/10.1007/s11302-022-09898-8 Š Carl, E., Witcraft, S. M., Kauffman, B. Y., Gillespie, E. M., Becker, E. S., Cuijpers, P., Van Ameringen, M., Smits, J., & Powers, M. B. (2020). Psychological and pharmacological treatments for generalized anxiety disorder (GAD): A meta-analysis of randomized controlled trials. Cognitive Behaviour Therapy, 49(1): 1-21. https:// doi.org/10.1080/165060 73.2018.1560358 Š Chen, F., Chen, H., Chen, Y., Wei, W., Sun, Y., Zhang, L., Cui, L., & Wang Y. (2021). Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacological Research, 165: 105469. https://doi.org/10.1016/j.phrs.2021.105469 Š Dalangin, R., Kim, A., & Campbell, R. E. (2020). The role of amino acids in neurotransmission and fluorescent tools for their detection. International Journal of Molecular Sciences, 21(17): 6197. https://doi.org/10.3390/ijms21176197 Š Dedic, N., Dworak, H., Zeni, C., Rutigliano, G., & Howes, O. D. (2021). Therapeutic potential of TAAR1 agonists in schizophrenia: Evidence from preclinical models and clinical studies. International Journal of Molecular Sciences, 22(24): 13185. https://doi.org/ 10.3390/ ijms222413185 Š Dejakaisaya, H., Kwan, P., & Jones, N. C. (2021). Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia, 62(7): 1485-1493. https://doi. org/10.1111/epi.16918 Š Dicks, L. (2022). Gut bacteria and neurotransmitters. Microorganisms, 10(9): 1838. https:// doi.org/10.3390/microorganisms10091838 Š Estrela, M., Herdeiro, M. T., Ferreira, P. L., & Roque, F. (2020). The use of antidepressants, anxiolytics, sedatives and hypnotics in Europe: Focusing on mental health care in Portugal and prescribing in older patients. International Journal of Environmental Research and Public Health, 17(22): 8612. https://doi.org/10.3390/ijerph17228612 Š Feng, Z., Lee, S., Jia, B., Jian, T., Kim, E., & Zhang, M. (2022). IRSp53 promotes postsynaptic density formation and actin filament bundling. The Journal of Cell Biology, 221(8): e202105035. https://doi.org/10.1083/jcb.202105035 Š Foster, D. J., Bryant, Z. K., & Conn, P. J. (2021). Targeting muscarinic receptors to treat schizophrenia. Behavioural Brain Research, 405: 113201. https://doi.org/ 10.1016/j. bbr.2021.113201 Š Franco, R., Reyes-Resina, I., & Navarro, G. (2021). Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines, 9(2): 109. https://doi.org/ 10.3390/ biomedicines9020109 Š Fuhr, L. M., Marok, F. Z., Hanke, N., Selzer, D., & Lehr, T. (2021). Pharmacokinetics of the CYP3A4 and CYP2B6 inducer carbamazepine and its drug–drug interaction potential: A physiologically based pharmacokinetic modeling approach. Pharmaceutics, 13(2): 270. https://doi.org/10.3390/pharmaceutics13020270 Š Garani, R., Watts, J. J., & Mizrahi, R. (2021). Endocannabinoid system in psychotic and mood disorders, a review of human studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 106: 110096. https://doi.org/10.1016/j.pnpbp.2020.110096 Š Ghossoub, E., Geagea, L., Kobeissy, F., & Talih, F. (2021). Comparative effects of psychotropic medications on sleep architecture: A retrospective review of diagnostic polysomnography sleep parameters. Sleep Science, 14(3): 236-244. https://doi.org/ 10.5935/1984-0063.20200071 Š Grabowska-Pyrzewicz, W., Want, A., Leszek, J., & Wojda, U. (2021). Antisense oligonucleotides for Alzheimer's disease therapy: from the mRNA to miRNA paradigm. National Library of Medicine. EBioMedicine, 74: 103691. https://doi.org/10.1016/j. ebiom.2021.103691 Š Grosman-Rimon, L., Wright, E., Sabovich, S., Rimon, J., Gleitman, S., Sudarsky, D., Lubovich, A., Gabizon, I., Lalonde, S. D., Tsuk, S., McDonald, M. A., Rao, V., Gutterman, D., Jorde, U. P., Carasso, S., & Kachel, E. (2022). Relationships among norepinephrine levels, exercise capacity, and chronotropic responses in heart failure patients. Heart Failure Reviews. https:// doi.org/10.1007/s10741-022-10232-y Š Helmchen, H. (2022). Alltägliche Grenzüberschreitungen: zur Skandalisierung der klinischen Arzneimittelprüfungen des Psychiaters Roland Kuhn [Everyday transgressions of borderlines: the scandalization of clinical drug trials of the psychiatrist Roland Kuhn]. Der Nervenarzt. https://doi.org/10.1007/s00115-022-01296-0 Š Hereta, M., Kamińska, K., Białoń, M., Wąsik, A., Lorenc-Koci, E., & Rogóż, Z. (2020). Effect of combined treatment with aripiprazole and antidepressants on the MK-801-induced deficits in recognition memory in novel recognition test and on the release of monoamines in the rat frontal cortex. Behavioural Brain Research, 393: 112769. https://doi.org/10.1016/j. bbr.2020.112769 Š Iovino, L., Tremblay, M. E., & Civiero, L. (2020). Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. Journal of Pharmacological Sciences, 144(3): 151- 164. https://doi.org/10.1016/j.jphs.2020.07.011 Š Jilani, T. N., Gibbons, J. R., Faizy, R. M., & Saadabadi, A. (2022). Mirtazapine. In StatPearls. StatPearls Publishing. Š Ju, Y., & Tam, K. Y. (2022). Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regeneration Research, 17(3): 543-549. https://doi. org/10.4103/1673-5374.320970 Š Kazama, M., Kato, Y., Kakita, A., Noguchi, N., Urano, Y., Masui, K., Niida-Kawaguchi, M., Yamamoto, T., Watabe, K., Kitagawa, K., & Shibata, N. (2020). Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology: Official Journal of the Japanese Society of Neuropathology, 40(6): 587-598. https://doi.org/10.1111/neup.12716 Š Kobayashi, K., Shikano, K., Kuroiwa, M., Horikawa, M., Ito, W., Nishi, A., Segi-Nishida, E., & Suzuki, H. (2022). Noradrenaline activation of hippocampal dopamine D1 receptors promotes antidepressant effects. Proceedings of the National Academy of Sciences of the United States of America, 119(33): e2117903119. https://doi.org/ 10.1073/ pnas.2117903119 Š Kolodny, T., Schallmo, M. P., Gerdts, J., Edden, R., Bernier, R. A., & Murray, S. O. (2020). Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Research: Official Journal of the International Society for Autism Research, 13(7): 1111-1129. https://doi.org/10.1002/aur.2300 Š Krasavin, M., Peshkov, A. A., Lukin, A., Komarova, K., Vinogradova, L., Smirnova, D., Kanov, E. V., Kuvarzin, S. R., Murtazina, R. Z., Efimova, E. V., Gureev, M., Onokhin, K., Zakharov, K., & Gainetdinov, R. R. (2022). Discovery and In vivo efficacy of trace amine-associated receptor 1 (TAAR1) agonist 4-(2-aminoethyl)-N-(3,5-dimethylphenyl)piperidine-1- carboxamide hydrochloride (AP163) for the treatment of psychotic disorders. International Journal of Molecular Sciences, 23(19): 11579. https://doi.org/10.3390/ijms231911579 Š Lee, R. Y., Oxford, M. L., Sonney, J., Enquobahrie, D. A., & Cato, K. D. (2022). The mediating role of anxiety/depression symptoms between adverse childhood experiences (ACEs) and somatic symptoms in adolescents. Journal of Adolescence, 94(2): 133-147. https://doi.org/10.1002/jad.12012 Š Le Gall, L., Anakor, E., Connolly, O., Vijayakumar, U. G., Duddy, W. J., & Duguez, S. (2020). Molecular and cellular mechanisms affected in ALS. Journal of Personalized Medicine, 10(3): 101. https://doi.org/10.3390/jpm10030101 Š Liu, X., Hua, F., Yang, D., Lin, Y., Zhang, L., Ying, J., Sheng, H., & Wang, X. (2022). Roles of neuroligins in central nervous system development: Focus on glial neuroligins and neuron neuroligins. Journal of Translational Medicine, 20(1): 418. https://doi.org/ 10.1186/s12967- 022-03625-y

Š Mauger, A. (2020). The holy war against alcohol: Alcoholism, medicine and psychiatry in Ireland, c. 1890–1921. In S. Taylor & A. Brumby (Eds.), Healthy minds in the twentieth century: Mental health in historical perspective. Palgrave Macmillan, Cham. Š Mavroeidi, P., Vetsi, M., Dionysopoulou, D., & Xilouri, M. (2022). Exosomes in alpha- synucleinopathies: Propagators of pathology or potential candidates for nanotherapeutics? Biomolecules, 12(7): 957. https://doi.org/10.3390/biom12070957 Š Mehra, D., Lakiang, T., Kathuria, N., Kumar, M., Mehra, S., & Sharma, S. (2022). Mental health interventions among adolescents in India: A scoping review. Healthcare, 10(2): 337. https://doi.org/10.3390/healthcare10020337 Š Mochida, S. (2022). Mechanisms of synaptic vesicle exo- and endocytosis. Biomedicines, 10(7): 1593. https://doi.org/10.3390/biomedicines10071593 Š Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P., & Horowitz, M. A. (2022). The serotonin theory of depression: A systematic umbrella review of the evidence. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01661-0 Š Montenegro-Venegas, C., Guhathakurta, D., Pina-Fernandez, E., Andres-Alonso, M., Plattner, F., Gundelfinger, E. D., & Fejtova, A. (2022). Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and cAMP. EMBO Reports, 23(8): e53659. https://doi.org/10.15252/embr.202153659 Š Morales, P., & Reggio, P. H. (2021). Emerging roles of cannabinoids and synthetic cannabinoids in clinical experimental models. Advances in Experimental Medicine and Biology, 1264: 47-65. https://doi.org/10.1007/978-3-030-57369-0_4 Š Müller, J., Timmermann, A., Henning, L., Müller, H., Steinhäuser, C., & Bedner, P. (2020). Astrocytic GABA accumulation in experimental temporal lobe epilepsy. Frontiers in Neurology, 11: 614923. https://doi.org/10.3389/fneur.2020.614923 Š Murley, A. M., Rouse, M. A., Jones, S. P., Ye, R., Hezemans, F. H., O’Callaghan, C., Frangou, P., Kourtzi, Z., Rua, C., Carpenter, T. A., Rodgers, C. T., & Rowe, J. B. (2020, November). GABA and glutamate deficits from frontotemporal lobar degeneration are associated with disinhibition. Brain, 143(11): 3449-3462. https://doi.org/10.1093/brain/awaa305 Š Orth, L., Meeh, J., Gur, R. C., Neuner, I., & Sarkheil, P. (2022). Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Frontiers in Human Neuroscience, 16: 933718. https://doi.org/10.3389/fnhum.2022.933718 Š Perry, A., Hughes, L. E., Adams, N., Naessens, M., Murley, A. G., Rouse, M. A., Street, D., Jones, P. S., Cope, T. E., Kocagoncu, E., & Rowe, J. B. (2022). The neurophysiological effect of NMDA-R antagonism of frontotemporal lobar degeneration is conditional on individual GABA concentration. Translational Psychiatry, 12(1): 348. https://doi.org/10.1038/s41398- 022-02114-6 Š Pilozzi, A., Carro, C., & Huang, X. (2020). Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. International Journal of Molecular Sciences, 22(1): 338. https://doi.org/10.3390/ijms22010338 Š Prasad, K., de Vries, E., Elsinga, P. H., Dierckx, R., & van Waarde, A. (2021). Allosteric interactions between adenosine A2A and dopamine D2 receptors in heteromeric complexes: Biochemical and pharmacological characteristics, and opportunities for PET imaging. International Journal of Molecular Sciences, 22(4): 1719. https://doi.org/ 10.3390/ ijms22010338 Š Richard, Y., Tazi, N., Frydecka, D., Hamid, M. S., & Moustafa, A. A. (2022). A systematic review of neural, cognitive, and clinical studies of anger and aggression. Current Psychology, 8: 1-13. https://doi.org/10.1007/s12144-022-03143-6 Š Rodríguez-Landa, J. F., Hernández-López, F., Martínez-Mota, L., Scuteri, D., Bernal-Morales, B., & Rivadeneyra-Domínguez, E. (2022). GABAA /benzodiazepine receptor complex in the dorsal hippocampus mediates the effects of chrysin on anxiety-like behaviour in female rats. Frontiers in Behavioral Neuroscience, 15: 789557. https://doi.org/ 10.3389/ fnbeh.2021.789557 Š Satarker, S., Bojja, S. L., Gurram, P. C., Mudgal, J., Arora, D., & Nampoothiri, M. (2022). Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells, 11(7): 1139. https://doi.org/10.3390/cells11071139 Š Serrano, M. E., Kim, E., Petrinovic, M. M., Turkheimer, F., & Cash, D. (2022). Imaging synaptic density: The next holy grail of neuroscience? Frontiers in Neuroscience, 16: 796129. https://doi.org/10.3389/fnins.2022.796129 Š Sheffler, Z. M., Reddy, V., & Pillarisetty, L. S. (2022). Physiology: Neurotransmitters. In StatPearls. StatPearls Publishing. Š Shimizu-Okabe, C., Kobayashi, S., Kim, J., Kosaka, Y., Sunagawa, M., Okabe, A., & Takayama, C. (2022). Developmental formation of the GABAergic and glycinergic networks in the mouse spinal cord. International Journal of Molecular Sciences, 23(2): 834. https:// doi.org/10.3390/ijms23020834 Š Sikka, P., Behl, T., Chandel, P., Sehgal, A., Singh, S., Makeen, H. A., Albratty, M., Alhazmi, H. A., & Meraya, A. M. (2022). Scrutinizing the therapeutic promise of purinergic receptors targeting depression. Neurotoxicity Research, 40(5): 1570-1585. https://doi.org/10.1007/ s12640-022-00550-2 Š Swamy, B. K., Shiprath, K., Ratnam, K. V., Manjunatha, H., Sannapaneni, J., Ratnamala, A., Naidu, K. C., Ramesh, S., & Babu, K. S. (2020). Electrochemical detection of dopamine and tyrosine using metal oxide (MO, M=Cu and Ni) modified graphite electrode: A comparative study. Biointerface Research in Applied Chemistry, 10(5); 6460-6473. https:// doi.org/10.33263/BRIAC105.64606473 Š Teleanu, R. I., Niculescu, A. G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M. (2022). Neurotransmitters: Key factors in neurological and neurodegenerative disorders of the central nervous system. National Library of Medicine. International Journal of Molecular Sciences, 23(11): 5954. https://pubmed.ncbi.nlm.nih.gov/35682631/ Š Thorp, J., Clewett, D., & Riegel, M. (2020). Two routes to incidental memory under arousal: Dopamine and norepinephrine. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(9): 1790-1792. https://doi.org/10.1523/ JNEUROSCI.2698-19.2020 Š Tian, H., Hu, Z., Xu, J., & Wang, C. (2022). The molecular pathophysiology of depression and the new therapeutics. MedComm, 3(3): e156. https://doi.org/10.1002/mco2.156 Š Van Stralen, J., Gill, S. K., Reaume, C. J., & Handelman, K. (2021). A retrospective medical chart review of clinical outcomes in children and adolescents with attention-deficit/ hyperactivity disorder treated with guanfacine extended-release in routine Canadian clinical practice. Child and Adolescent Psychiatry and Mental Health, 15(1): 55. https://doi. org/10.1186/s13034-021-00402-5 Š Wang, J., Serratrice, N., Lee, C. J., François, F., Sweedler, J. V., Puel, J. L., Mothet, J. P., & Ruel, J. (2021). Physiopathological relevance of D-serine in the mammalian cochlea. Frontiers in Cellular Neuroscience, 15: 733004. https://doi.org/10.3389/fncel.2021.733004 Š Wang, L., Xie, X., Ke, B., Huang, W., Jiang, X., & He, G. (2021). Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. Journal of Advanced Research, 38: 261–274. https://doi.org/10.1016/j.jare.2021.08.012 Š Wu, Z., Lin, D., & Li, Y. (2022). Pushing the frontiers: Tools for monitoring neurotransmitters and neuromodulators. Nature Reviews: Neuroscience, 23(5): 257-274. https:/doi.org/ 10.1038/s41583-022-00577-6 Š Zhang, X., Hu, X., Zhao, Y., Lu, C. Y., Nie, X., & Shi, L. (2022). Trends in the utilization of psychotropic medications in China from 2018 to 2021. Frontiers in Pharmacology, 13: Š 967826. https://doi.org/0.3389/fphar.2022.967826 Š Zhu, S., Sridhar, A., Teng, J., Howard, R. J., Lindahl, E., & Hibbs, R. E. (2022). Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nature Communications, 13(1): 4582. https://doi.org/10.1038/s41467-022-32212-4

Page 188

Book Code: PYFL4024

EliteLearning.com/Psychology

Powered by